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A. Uniqueness of our method

For easy reference and comparison, we categorize our
work as “a novel method for occlusion removal” in the main
paper. But it has essential differences from existing oc-
clusion removal methods. While existing methods mostly
remove occlusions for given viewpoints, our method can
synthesize occlusion-free images with novel viewpoints, by
building an occlusion-free scene representation. Moreover,
without relying on external supervision of specific occlu-
sion types for training, our method is capable of handling
more diverse occlusions in the real world when their sur-
rounding environment is given. Examples can be found in
Fig. 4, Fig. 5, and Fig. 6 (in the main paper), and Fig. S3 in
this document. Readers are encouraged to visit our project
page1 to watch the animated results

B. Additional analysis to key modules

Two modules ensures the effectiveness of our method:
a joint optimization of camera parameters and scene MLP
guaranteeing high-quality scene reconstruction, and a su-
pervision mask enabling the selective training of the back-
ground MLP to learn the background scene representation
only.

Our method is conducted in a selective manner. In the
joint optimization, the pose refinement can select similar
features belonging to background or occlusion by building
a cost volume, which ensures a high-quality representation
of whole scenes. For the subsequent selective supervision,
we use a mask MLP to generate a supervision mask to se-
lectively learn the background representation.

We will dig deeper into the each module with more ex-
planations and examples here.

*Corresponding author.
1https://freebutuselesssoul.github.io/occnerf
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Figure S1. The SCRIBBLE2 scene in our dataset for illustration of
(a) the feature extraction and matching process of COLMAP [9];
(b) the rendered novel views by vanilla NeRF [8], based on the
pose estimated by COLMAP [9]; (c) the rendered novel views
by NeRF−− [10]; (d) the rendered results with occlusion by the
scene MLP in our method. The red circles in (a) refer to feature
points not matched with any other image, while the magenta ones
refer to those matched with some other images (please zoom-in
for details). Please use Adobe Acrobat or KDE Okular to see
the animated results in (b), (c) and (d).

B.1. Scene reconstruction with cost volume

An example is displayed in Fig. S1 to show the
importance of joint optimization. One motivation for
joint optimization is that the camera poses generated by
COLMAP [9] are not stable when occlusions are presented.
We notice that the features estimated by COLMAP [9] tend
to be dominated by one of the layers, e.g. the SCRIBBLE2
scene in Fig. S1(a) where background dominates the pose
estimation process. This means COLMAP [9] cannot cal-
culate the accurate spatial location of the scene as a whole,
including both the background scene and the foreground oc-
clusions. The estimated poses by COLMAP [9] lead to the
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Figure S2. (a) The synthesized novel view by our scene MLP; (b)
corresponding supervision mask P . White regions in the super-
vision mask refer to the regions used to supervise the training of
background MLP. Please use Adobe Acrobat or KDE Okular to
see the animated results.

unstable position changes of scribbles in Fig. S1(b), which
is far from a reliable representation of the whole scene.

We seek cost volume to achieve a pose refinement. As
a commonly-used technique in multi-view stereo methods,
cost volume shows robustness in reconstructing the scene
[1,3,12]. In short, the cost volume is calculated by the vari-
ance of the features from multiple viewpoints. Assuming
a 3D point appears similar in neighboring views, the cost
volume can provide the reconstruction with a hint about the
likelihood of an actual point’s presence in any given po-
sition, which helps the pose refinement select the suitable
features to learn camera poses. In Fig. S2(a), we show the
synthesized novel views of the whole scene using the scene
MLP, to illustrate that we indeed obtain a reliable scene rep-
resentation and camera poses.

B.2. Selective supervision with depth constraints

With a faithful representation of the whole scene, we
only need a reasonable way to selectively learn the represen-
tation of desired background scenes from it. In our method,
we leverage depth to achieve this goal. By definition, occlu-
sion is something that blocks the view of the object, which
means the ray comes across other objects before it reaches
the background object in rendering.

We, therefore, use the depth constraints to describe such
spatial correlation by assuming the greater bidirectional
depth difference of occlusions, which is, intuitively, the
depth difference between the most likely foreground object
and the most likely background object. Under our assump-

tion, the smaller the bidirectional depth difference, the less
likely there are occlusions along the ray.

In this way, our method can judge the presence fore-
ground occlusion without being trained on excessive data
to learn what an occlusion may look like. In Fig. 2 of the
main paper, we show the supervision mask for FENCE1, and
in Fig. S2(b) we show the supervision mask of more scenes
with irregularly-shaped occlusions in our dataset, namely
the scenes of STATUE, WIRE1, and WIRE2.

C. More results
We choose PWC-Net [6] as a baseline to compare with

the classical occlusion removal methods. Though several
occlusion removal methods based on image sequences have
been proposed [4, 5, 11], none of them comes with avail-
able codes for faithful evaluation. Also, PWC-Net [6] is the
latest work to our knowledge, that claims to show occlu-
sion removal ability in various scenes [6]. We demonstrate
more results of occlusion-free novel views on the remain-
ing scenes in our dataset (in addition to those already dis-
played in Fig. 4 of the main paper). Specifically, we test in
the scenes of SCRIBBLE2, WIRE2, SCRIBBLE3, FENCE2,
and FENCE3. As shown in Fig. S3, for each scene, we
show the recovered background scene using background
MLP as well as some baseline methods. Note that all of
the COLMAP-based methods fail with COLMAP [9] in the
scene of WIRE2. For FENCE2, the results of Ha-NeRF [2]
seem to recover a clearer background, but it also wrongly
removes white textures on the playground. For another ex-
ample FENCE3 in our dataset, the completeness of back-
ground is still the best among all compared methods, albeit
some remaining part of occlusions in the result at top left
corner.

Besides, we also show animated results with larger cam-
era motion in Fig. S4.
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(a) A sample view of input scene

Not Available due to
COLMAP failure

(b) Vanilla NeRF [8]

Not Available due to
COLMAP failure

(c) PWC-Net+NeRF [6, 8]

Not Available due to
COLMAP failure

(d) Ha-NeRF [2]

Not Available due to
COLMAP failure

(e) NeRF-W [7]

(f) Our method

Figure S3. From left to right, we show animated novel view synthesis on SCRIBBLE2, WIRE2, SCRIBBLE3, FENCE2, and FENCE3. A
sample view of the input scene is shown in (a) for reference. From (b) to (f), we show results obtained by (b) vanilla NeRF [8], (c)
PWC-Net [6] + NeRF [8], (d) Ha-NeRF [2], (e) NeRF-W [7], and (f) our method. Please use Adobe Acrobat or KDE Okular to see the
animated results. Some results show stronger variation over the animation due to failure in extracting consistent background.

(a) FENCE1 (b) RAINDROP

Figure S4. The synthesized novel views of the proposed method
with larger camera motion. Please use Adobe Acrobat or KDE
Okular to see the animated results.
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